Task ID

Task

Prompt

Sigmoid

Implement a CUDA program for sigmoid activation function: sigmoid(x) = 1/(1 +
exp(—x)). Input shape: (batch_size, dim); Output: same shape as input.

Matrix Multiplication

Write a program that multiplies two matrices of 32-bit floating point numbers on a
GPU. Given matrix A of dimensions M x K and matrix B of dimensions K x N,
compute the product matrix C' = A x B, which will have dimensions M x N.

Max Pooling 3D

Implement a CUDA program for 3D max pooling function that selects the maximum
value within a defined region (a window) of a feature map. Input shape: (batch_size,
channels, dim1, dim2, dim3); Output: with 3D max pooling applied.

LayerNorm

Implement a GPU program that performs Layer Normalization (LayerNorm) opera-
tion, which normalizes across the features for each individual data sample in a layer.
Input of shape (batch_size, features, dim1, dim2); Output with Layer Normalization
applied, same shape as input.

2D Convolution

Write a program that performs a 2D convolution operation on the GPU. Given
an input matrix and a kernel (filter), compute the convolved output. The convolu-
tion should be performed with a “valid” boundary condition, meaning the kernel
is only applied where it fully overlaps with the input. The input consists of: (1)
input: A 2D matrix of 32-bit floating-point numbers, represented as a 1D array
in row-major order. (2) kernel: A 2D kernel (filter) of 32-bit floating-point num-
bers, also represented as a 1D array in row-major order. The output should be
written to the output matrix (also a 1D array in row-major order). The output
matrix will have dimensions: output_rows = input_rows - kernel_rows + 1, out-
put_cols = input_cols - kernel_cols + 1. The convolution operation is defined as:

outputli[j] = Zkeme”ows*l Zkemel’wls*l input[i+m][j+n]*kernel[m][n].

m=0 n=0

Multi-Head Self-Attention

Implement a CUDA program for multi-head self-attention. Given three input

matrices @ (queries), K (keys), and V' (values) of size N X dmogel, cOmpute:

MultiHead(Q@, K, V) = Concat(heady, ..., heady), where each head computes:
T

head; = softmax (Q:/%) V; with di, = dmoger/h and Q;, K;, V; being the i-th

head’s partition of the input matrices.

Mean Square Error

Implement a CUDA program to calculate the Mean Squared Error (MSE) between
predicted values and target values. Given two arrays of equal length, predictions
and targets, compute: MSE = - Zil(predictionsi — targets;)? where N is the
number of elements in each array. Input: predictions, targets; Output: MSE.

Matrix Transpose

Write a program that transposes a matrix of 32-bit floating point numbers on a
GPU. The transpose of a matrix switches its rows and columns. Given a matrix A of
dimensions rows X cols, the transpose AT will have dimensions cols x rows. All
matrices are stored in row-major format.

Implement a program that reverses an array of 32-bit floating point numbers
in-place. The program should perform an in-place reversal of input.

Implement a program that performs the Rectified Linear Unit (ReLU) activation
function on a vector of 32-bit floating point numbers. The ReLU function sets
all negative values to zero and leaves positive values unchanged: ReLU(z) =
max(0, x).

Implement a GPU program that, given a 1D array input of 32-bit floating point
numbers of length NV, selects the & largest elements and writes them in descending
order to the output array of length k.

Write a CUDA program that sorts an array of 32-bit floating-point numbers in
ascending order using the bubble sort algorithm. Do not use other algorithms.

Implement a program that copies an N x N matrix of 32-bit floating point
numbers from input array A to output array B on the GPU. The program should
perform a direct element-wise copy so that B; ; = A; ; for all valid indices.

Write a CUDA program that performs parallel reduction on an array of 32-bit
floating point numbers to compute their sum. The program should take an input
array and produce a single output value containing the sum of all elements.

Implement a CUDA program that computes the dot product of two vectors
containing 32-bit floating point numbers. The dot product is the sum of the
products of the corresponding elements of two vectors. Mathematically, the dot

product of two vectors A and B of length n is defined as: A- B = Z?:Ol A;- B;.

9 Reverse Array

10 ReLU Activation Fuction
11 Top-K Selection

12 Sorting

13 Matrix Copy

14 Reduction

15 Dot Product

16 Prefix Sum

Write a CUDA program that computes the prefix sum (cumulative sum) of an
array of 32-bit floating point numbers. For an input array [a, b, ¢, d, . . .], the prefix
sumis [a,a +b,a+b+c,a+b+c+d,...].

17 Categorical Cross-Entropy Loss

Implement a CUDA program to calculate the categorical cross-entropy loss for
a batch of predictions. Given a matrix of predicted logits Z of size N x C
and a vector of true class labels true_labels of size N, compute the average
cross-entropy loss over the batch. The loss for a single sample j with logits
zj = [#j1,...,2jc] and true label y; is calculated using the numerically stable

formula: Loss; = log (chzl eZJk) — Zj,y,- The final output stored in the loss
variable should be the average loss over the N samples: L = % Zjvzl Loss;.

Input: logits, true_labels, N (number of samples), and C' (number of classes).
Output: loss (a pointer to a single float).

18 Monte Carlo Integration

Implement Monte Carlo integration on a GPU. Given a set of function values
y; = f(x;) sampled at random points uniformly distributed in the interval [a, b],

estimate the definite integral: f: f(x)dr ~ (b—a)- L Z@Z\; y;. The Monte

Carlo method approximates the integral by computing thenaverage of the function

values and multiplying by the interval width.

19 Histogramming

Write a GPU program that computes the histogram of an array of 32-bit integers.
The histogram should count the number of occurrences of each integer value
in the range [0, num_bins). You are given an input array input of length N
and the number of bins num_bins. The result should be an array of integers of
length num_bins, where each element represents the count of occurrences of its
corresponding index in the input array.

20 Ordinary Least Squares Regression

Solve the Ordinary Least Squares (OLS) regression problem on a GPU. Given
a feature matrix X of size n_samples x n_features and a target vector y
of size n_samples, compute the coefficient vector 8 that minimizes the sum
of squared residuals: ming || X3 — y||*>. The closed-form solution to OLS is:
B=(XTX)"'XTy.

Task ID

Task

Prompt

21

Activation Layer

Implement a CUDA kernel for an Activation Layer that applies a per-element activa-
tion function to its input tensor. The output tensor has the same shape as the input.
For this implementation, use the ReLU activation function: y = max(0, x).

22

Assertion Layer

Write a CUDA program that simulates the behavior of an assertion layer in a neural
network. This layer takes a boolean tensor (flattened 1D array) as input. If any element
in the input is false (0) at runtime, a runtime error should be raised and the network
should terminate.

23

Cast Layer

Write a CUDA program that simulates a cast layer in a neural network. This layer
takes a tensor of float32 values as input and casts it to int32 values.

24

Concatenation Layer

Write a CUDA program that simulates the behavior of a concatenation layer in a neural
network. The layer receives two input tensors of the same shape on all dimensions
except for the concatenation axis. It outputs a new tensor with the concatenation
performed along the specified axis.

25

Constant Layer

Write a CUDA program that simulates a constant layer in a neural network. This
layer produces a fixed constant tensor of a specified shape and value.

26

Convolution Layer

Implement a CUDA convolution layer that takes as input: (1) A 4D tensor of shape
[B, Cin, H,W]; (2) A 4D weight tensor of shape [Coy, Cin, K, K]; (3) An optional
1D bias tensor of shape [Coy]. The kernel performs standard 2D cross-correlation
(not flipped convolution), with unit stride and no padding, producing an output of
shape [B,Cow, H— K +1,W — K + 1].

27

Cumulative Layer

Write a CUDA program that implements a cumulative operation layer in a neural
network. The operation is an inclusive forward cumulative sum (i.e., prefix-sum)
along axis 1 of a 2D float tensor. The output tensor must have the same shape as the
input.

28

Deconvolution Layer

Write a CUDA program that implements a 2D deconvolution (transposed convolution)
layer in a neural network. The layer takes an input tensor of shape [N, Ci,, Hiy, Wiy]
and a weight tensor of shape [Cou, Cin, Kp, K], and produces an output tensor
of shape [N, Cout, Hout, Wour] using stride=1 and no padding. The operation is the
reverse of 2D convolution.

29

Dequantize Layer

Write a CUDA program that implements a dequantization layer. This layer takes an
INTS input tensor, a corresponding float32 scale tensor, and (optionally) a zero-point
tensor (default to 0), and performs the operation: output[i:] = (input[i] — zeroPt[i]) x
scale[i]. For simplicity, assume per-tensor quantization with scalar scale and zeroPt
values.

30

Dynamic Quantize Layer

Implement a CUDA kernel that simulates a dynamic symmetric quantization layer.
Given a 1D floating-point input tensor, the kernel calculates the scale factor as:
scale = 222D Each element is then quantized using: g; = round(x; /scale) and
stored as INT8. Return both the quantized tensor and the computed scale as outputs.

31

Einsum Layer

Write a CUDA program that implements an Einsum layer. This layer performs a
tensor operation based on the Einstein summation convention. For this task, assume
the Einsum equation is “¢k, kj — ¢7” (matrix multiplication). The inputs are two
2D float32 matrices: A with shape [M, K] and B with shape [K, N|. The output is a
matrix of shape [M, NJ.

32

Elementwise Layer

Write a CUDA kernel that implements an elementwise operation layer supporting
broadcasting, as defined in TensorRT. This layer performs a per-element binary
operation (addition in this task) on two tensors. If dimensions mismatch, broadcasting
is allowed where one dimension is 1.

33

Fill Layer

Implement a CUDA kernel that simulates the behavior of IFillLayer with FillOpera-
tion::kLINSPACE. Given: (1) A 1D shape tensor of the form [N]; (2) A scalar start
value « (float); (3) A scalar step size 5 (float). Generate a 1D float tensor of size N,
where each output element is computed as: y; = a+ix 3, ¢=0,..., N—1. Note:
B is the step size. This corresponds to IFillLayer in TensorRT when § is provided as
arank-1 vector (not a scalar), representing linspace with constant stride.

34

Gather Layer

Implement a CUDA program that simulates the functionality of a TensorRT Gather layer
in GatherMode::kDEFAULT. The CUDA kernel takes as input a 2D data tensor of shape
[N, C] and a 1D indices tensor of length IV, and outputs a 1D gathered tensor, where each
output[7] = datali, indices|i]].

35

Grid Sample Layer

Implement a CUDA kernel that performs 2D grid sampling with bilinear interpolation and
clamping, simulating the GridSample layer (SampleMode::kCLAMP). The input is a 2D
float tensor of shape (H, W) (flattened to 1D in row-major order). The grid is a 3D float
tensor of shape (Hou, Wou, 2), where each grid point contains normalized coordinates
(z,y) € [-1,1], also flattened to 1D. The output is a 2D float tensor of shape (Hout, Wout).
stored as 1D. For each output pixel (h,w), compute the sampled value from the input
using bilinear interpolation with clamping behavior (i.e., if the interpolated coordinate is
outside the input boundary, use the closest valid pixel value). The interpolation formula is:
(1) Convert normalized coordinates to float pixel positions: f, = ((x + 1) * W —1)/2,
fy = ((y+1)*H —1)/2; (2) Find the surrounding four pixels, apply clamping to (z¢, 1),
(Y0, y1); (3) Use standard bilinear interpolation to compute the final value.

36

Identity Layer

Implement a CUDA kernel for an Identity layer that simply copies input tensor values to
the output tensor. This identity operation preserves values but may optionally allow layout
or data type conversions (which can be ignored in this basic test).

37

Conditional Input Layer

Implement a CUDA kernel simulating a simplified conditional-sum operation in Con-
ditional Input Layer. The kernel takes a 1D input tensor = of length N and a boolean
condition tensor cond of the same length. For each element x[i], if cond][é] is true, then z[i]
is routed to the “then” branch; otherwise, to the “else” branch. The kernel should compute
the sum of all values routed to the then branch and the else branch separately. The final
outputs are two scalar values: then_sum and else_sum.

38

LRN Layer

Implement a CUDA kernel for the Local Response Normalization (LRN) layer used
in deep learning. The layer takes a 2D input tensor of shape (N, C), where C' is the
channel dimension. For each element, the output is computed using the formula: y; =

L 7. This should be implemented with the normalization applied

min(C—1,i+n/2)
(1+% > max(0.imn/2) w?)

across channels, using the default parameters: « = le — 4, 6 = 0.75, and n = 5.

39

Conditional Output Layer

Implement a CUDA kernel for the ConditionalOutput layer (IIfConditionalOutputLayer).
This layer takes two floating-point input tensors: true_output and false_output, and a
boolean flag array of the same shape. It outputs true_output[i] if flag[i] is true, otherwise
false_output[]. Inputs: (1) flag: [IV] boolean mask (0 or 1); (2) true_output: [N] float array;
(3) false_output: [N] float array. Output: output: [V] float array chosen based on the flag.

40

Matrix Multiply Layer

Write a CUDA program that implements a matrix multiplication layer. The layer accepts
two float32 input tensors A and B, which may be 2D matrices or vectors. The operation
computes the matrix product AQB following broadcasting rules: if one operand has a
singleton batch dimension, it is broadcast to match the other.

41

NMS Layer

Implement a CUDA kernel for Non-Maximum Suppression (NMS) that operates per batch
and per class. The input includes bounding boxes of shape [batchSize, numBoxes, 4] and
confidence scores of shape [batchSize, numBoxes|. For each batch, select up to MaxOut-
putBoxesPerClass boxes with confidence scores above ScoreThreshold and mutually IoU
< IoUThreshold. The selected indices should be stored as (batchIndex, boxIndex) pairs,
sorted by batch index and descending score. You can follow these five structured steps in
the CUDA kernel: (1) For each batch independently, iterate through numBoxes and collect
boxes where score > ScoreThreshold; (2) Sort the valid box indices by their corresponding
scores in descending order; (3) Apply NMS suppression; (4) Select top-k boxes; (5) Pad
unused output with -1.

42

NonZero Layer

Implement a CUDA program for a NonZero layer. This layer takes a 2D input tensor and
returns the indices of all non-zero elements, following ONNX NonZero semantics. The
output is a 2 X N matrix of int32 values where [V is the number of non-zero elements. Each
column represents a (row, column) coordinate, and the columns must be lexicographically
ordered. Input data types may include float32 or int32.

43

Normalization Layer

Implement a CUDA kernel for a normalization layer that applies the following transformation
to the input tensor: Y = S -Mean(Xaxes)

4/ Variance(X)-+e

specified axes. This implementation assumes normalization is done along the last dimension
of a 2D input (i.e., row-wise normalization). The scale .S and bias B tensors are broadcasted
along the rows.

S+ B, where Mean and Variance are computed over

44

OneHot Layer

Write a CUDA kernel and testing framework to implement the behavior of a OneHot layer,
as defined in TensorRT. This kernel should support the case where axis = -1, i.e., the one-hot
dimension is appended as the last axis. The kernel takes three inputs: (1) Indices — an int32
tensor of arbitrary shape; (2) Values —a 1D tensor of shape [off_value, on_value], type float32;
(3) Depth — a scalar int32, indicating the number of classes. The output is a tensor of shape
Indices.shape + [Depth]. Each output element is set to on_value at the index specified in
Indices, and off_value elsewhere.

45

Padding Layer

Implement a CUDA kernel for a Padding layer that applies zero-padding only to the last
two dimensions of a 4D input tensor. The padding values can be positive (for padding) or
negative (for cropping). The input tensor is in NCHW layout. The output tensor shape is
adjusted according to the specified padding amounts for the height and width dimensions.

46

Parametric ReLU Layer

Implement a CUDA kernel for a Parametric ReLLU (PReLU) layer. The input is a 2D tensor
of shape [N, C], and each channel has a corresponding learned slope. For positive inputs,
the output equals the input; for negative inputs, the output is the input multiplied by the
corresponding slope. The slope tensor is a build-time constant with shape [C].

47

PluginV2 Layer

Write a CUDA program to implement a custom plugin layer for TensorRT, which computes
the element-wise square of a 2D float tensor. The CUDA kernel should take a [V, C] float
input tensor and produce a [N, C] float output tensor, where each element is computed as
Y =T*x.

48

PluginV3 Layer

Write a CUDA program simulating a V3 plugin layer behavior. The plugin performs an
element-wise cube (y =) operation on a 2D float input tensor of shape [N, C], and
produces a tensor of the same shape as output. Implement the CUDA kernel, memory
management, and correctness testing.

49

Pooling Layer

Implement a CUDA kernel that simulates a basic Max Pooling layer in a neural network.
The kernel should apply a max reduction operation over a fixed-size window along the last
dimension of a 2D input tensor. For each test case, input is a flattened 2D tensor of shape
[B, W] and output is the pooled tensor of shape [B, W’ = W/ /pool_size|, where pool_size
is fixed. The kernel should work with float32 data.

50

Quantize Layer

Implement a CUDA kernel that simulates the output of a TensorRT Quantize layer followed
by implicit dequantization. The kernel should quantize a floating-point input tensor using
the formula: output = clamp(round(input/scale)) x scale, where scale is a positive scalar
(per-tensor quantization). The rounding method should be round-to-nearest ties-to-even.
Clamp the intermediate quantized value to the range [—128, 127] to simulate int8 symmetric
quantization. The kernel should support 2D float input and produce float32 output.

51

Ragged Softmax Layer

Implement a CUDA kernel for a RaggedSoftmax layer. The input is a 2D float tensor of
shape Z x S, and a 1D bounds tensor of shape Z x 1 specifying the valid length of each
of the Z sequences (i.e., number of elements to apply softmax on per row). For each row
1, apply softmax only on the first bounds[i] values of that row. The remaining entries in the
row can be left as zero. This simulates ragged or variable-length softmax computation across
sequences. The output tensor should have the same shape as input.

52

Reduce Layer

This task is about implementing a reduction layer in a neural network. The reduction layer
takes a tensor of arbitrary shape and performs a specified reduction operation (e.g., sum,
mean, max) along the specified axis or across the entire tensor. The output tensor will have
the same shape as the input tensor, except for the reduced dimensions. In this particular
implementation, the operation is to sum all elements of the input tensor along the second
dimension (i.e., summing each row), and the results are stored in the output tensor. Input
Tensor Shape: [Z, M| where Z is the number of samples (batch size) and M is the number
of features (columns); Output Tensor Shape: [Z], as we perform reduction along the second
dimension (i.e., sum the elements in each row).

53

Resize Layer

The Resize Layer is responsible for resizing multi-dimensional tensors, supporting kN-
EAREST interpolation mode. It resizes the input tensor’s last m dimensions, where
m < min(8, N) and N > 0. Key Functionalities: Nearest Neighbor Resizing: The kNEAR-
EST mode resizes the tensor by mapping the output coordinates to the nearest input tensor
coordinates. The kernel performs resizing with proper coordinate mapping and interpolation.
The task is to implement the resizing operation in CUDA, perform the resizing with nearest
neighbor interpolation, and compare the result with a CPU-generated reference.

54

Reverse Sequence Layer

Implement a CUDA kernel for the ReverseSequence layer. Given a 2D input tensor of shape
[batch_size, sequence_length| and a 1D tensor sequenceLens of size [batch_size], reverse the
first sequenceLens|¢] elements along the sequence dimension for each batch 7, and leave the
remaining elements unchanged. The output tensor must match the shape of the input. This
implementation assumes batchAxis = 0 and sequenceAxis = 1.

55

Scale Layer

The task is to implement a CUDA kernel for the Scale layer in a neural network definition.
This layer performs a per-element computation: output = (input x scale + shift)P*V**. The
coefficients for scale, shift, and power can be applied on a per-tensor, per-channel, or per-
element basis. If no weights are provided, the default values are used for shift (0), power
(1), and scale (1). The output tensor has the same shape as the input tensor. This layer can
be used for operations such as INT8 quantization when combined with specific data types
(FP32 input and INT8 output).

56

Scatter Layer

Write a CUDA program to implement a Scatter layer in ScatterMode::KELEMENT.
Each input tensor is 4D in NCHW format, and scatter is performed along axis 2
(the H dimension) only. The kernel takes three inputs: (1) data: a float32 tensor
[N,C, H,W]; (2) indices: an int32 tensor [N, C, H, W] specifying where to scatter; (3)
updates: a float32 tensor [N, C, H, W]. Each value updates [n, ¢, h, w] is written to output
[n, ¢, indices[n, ¢, h, w], w]. All indices values are guaranteed to be in [0, H). The output
tensor is initialized as a copy of data, and then modified by the scatter operation.

57

Select Layer

Implement a CUDA kernel that performs element-wise selection from two input tensors z
and y, based on a condition tensor cond. For each index %, the output is: output[:] = cond[?]
=0 ? z[i] : y[¢]. All three tensors (cond, x, y) have the same 1D shape.

58

Shape Layer

Write a CUDA kernel that implements the functionality of a “Shape Layer”. The kernel
should accept an input tensor of arbitrary dimensions (minimum rank 1) and output a 1D
tensor containing the dimensions of the input tensor. For example, if the input shape is
[2,3,5, 7], the output tensor should be [2, 3, 5, 7] of type int64. This mimics the behavior of
TensorRT’s Shape Layer.

59

Shuffle Layer

Implement a CUDA kernel for a Shuffle Layer that applies a fixed sequence of operations to
a 4D input tensor X of shape [N, C, H, W]. The operations are: (1) First transpose: permute
axes to [C, N, H,W]; (2) Reshape: flatten into [C, N x H x W]; (3) Second transpose:
permute to [V « H x W, C|]. The input is stored in row-major format. The final output is also
rOW-major.

60

Slice Layer

Implement a CUDA kernel that performs static slicing on a 2D input tensor using the
specified 1D arrays start, size, and stride. The slicing is applied independently across
each axis without specifying axes (i.e., operates on the full rank of the input tensor). The
input is a matrix of shape [H, W], and the output is obtained by applying slicing rules:
output[¢][j] = input[start[0] + 7 - stride[0]][start[1] 4 j - stride[1]]. Validate correctness by
comparing output to a precomputed reference.

61

SoftMax Layer

Implement a CUDA kernel that performs a per-channel Softmax operation over a 2D input
tensor with shape [N, C], where C'is the softmax axis (channel). The output tensor must
retain the same shape.

62

Squeeze Layer

Implement a CUDA kernel simulating a squeeze operation along a known unit axis. The
input is a 2D tensor of shape [NV, 1], and the squeeze removes the singleton dimension to
produce a 1D tensor of shape [N].

63

TopK Layer

Implement a CUDA program that performs TopK reduction on a 2D input tensor. For each
row, the kernel finds the top- /K maximum values and writes them to the output tensor. This
implementation assumes static K, which is fixed and passed as a macro definition. The
output should contain the top-K values for each row in descending order.

64 UnaryOp Operation Layer Implement a CUDA program to simulate a UnaryOp layer in a neural network, specifically
for the EXP operation. The EXP operation computes the exponential function element-
wise, defined as: y; = exp(x;), where z; is the i-th element of the input tensor, and y; is
the corresponding output. The layer applies the exponential function to each element of
a 1D input tensor and returns the result as the output tensor. The CUDA kernel should
handle large input sizes efficiently.

65 Unsqueeze Layer Implement a CUDA kernel simulating the behavior of an Unsqueeze operation. The
operation inserts a unit dimension at a specified axis of the input tensor’s shape. In this
implementation, we assume the input is a 2D tensor of shape [N, D], and we insert a
new axis at position 1, producing an output tensor of shape [N, 1, D]. The actual memory
layout of the data remains the same, but we simulate this transformation by copying input
to output buffer shaped accordingly.

66 Loop Trip Limit Layer Implement a CUDA kernel simulating the behavior of a LoopTripLimit layer with
TripLimit::kCOUNT mode. Each thread performs a fixed number of iterations as specified
by a scalar INT32 input. In each iteration, the thread increments a value by 1. The final
output is an array where each element equals the trip limit (i.e., the total number of itera-
tions).

67 Loop Recurrence Layer ~ Implement a CUDA kernel to simulate the behavior of a Loop Recurrence Layer as in
TensorRT. The layer has two inputs: an initial value tensor and an update (step) value
tensor. The kernel computes the result of a loop-like recurrence defined as: out[i] =
init[é] 4 trip_count x delta[]. That is, starting from an initial value init, the output after a
fixed number of iterations trip_count is computed by adding delta in each iteration. The
goal is to validate this recurrence over a batch of N samples.

68 Loop Iterator Layer Implement a CUDA kernel that simulates the behavior of a Loop Iterator Layer which
iterates over axis O of a 2D input tensor. Each iteration produces a slice (i.e., a row of the
matrix). In this implementation, we assume the input is a matrix of shape (N, D), and
we extract all rows in order into a contiguous output buffer of shape (IV, D). The kernel
copies each row individually into the output, simulating a loop’s behavior with iterator
over axis 0.

69 Loop Output Layer Implement a CUDA kernel simulating the LoopOutput layer in KCONCATENATE mode
along axis 0. Each iteration outputs a 1D tensor of fixed size D, and the number of iterations
is K. The final result is a 2D tensor of shape [K, D], where each row corresponds to the
output of one iteration. The output tensor is laid out in row-major format.

70 Plugin Layer Implement a CUDA kernel for a custom Plugin Layer. The plugin takes a 2D float32 input
tensor of shape [V, C], and for each row, it computes the L2 norm (i.e., the square root of
the sum of squares across the C' features).

71 Condition Layer Implement a CUDA kernel that simulates the behavior of a TensorRT IIfConditional layer.
This layer takes a scalar boolean predicate and two candidate value vectors: the “then”” and
“else” branches. If the scalar predicate is true (non-zero), then the output is equal to the
then_branch vector; otherwise, the output is equal to the else_branch vector. The kernel
must perform this conditional selection efficiently using a single branch evaluation across
the entire array.

